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1. INTRODUCTION

Let D be the open unit disc in the complex plane. A Blaschke product
B of degree n, n�1, is an analytic function of the form

B(z)=* `
n

k=1

z&ak

1&akz
; |*|=1, ak # D, k=1, ..., n. (1)

We let Bn denote the set of all Blaschke products of degree n or less; Bn is
compact in the topology of uniform convergence on compact subsets of D.
Let W be a non-negative continuous function on D and let E be a compact
subset of D. In this paper we shall be concerned with the asymptotic dis-
tribution, as n � �, of the zeros of the solutions to the extremal problem

min
B # Bn

&BW n&E , (2)

where the norm & }&E is the sup norm over E. Such minimization problems
arise, for instance, in the theory of n-widths of sets of analytic functions; see
[3] and [18] where W#1. Our analysis goes beyond Blaschke products
and the unit disc and leads us to results about the asymptotic behavior of
the zeros of other functions on D and on other domains. Fekete and Walsh
[4] and Blatt, Saff, and Simkani [1] explore some of the same problems
raised here but in the more classical setting of minimal polynomials with
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weight W#1. There the result is that, under rather general conditions, the
nth root of the minimum converges to the transfinite diameter of E and by
placing the mass 1�n at each of the zeros of the n th minimal polynomial,
one obtains a sequence of measures that behaves asymptotically like the
equilibrium measure for the set E, provided E has connected complement
and empty interior. We will see counterparts to these results in this paper.
Mhaskar and Saff [13] first explored weighted approximation problems of
the type considered here for subsets E of the real line; in [14] they
investigate similar asymptotic behavior for extremal polynomials in the
complex plane. The asymptotic distributions of certain extremal point
sequences subject to an external field were also studied in the works of
Go� rski [5] and Kleiner [8].

In Section 2 we consider a minimal energy problem in the presence of an
external field, where the energy is with respect to the Green potential of a
bounded domain 0. Section 3 contains the main result on the asymptotic
distribution of zeros of optimizing sequences. Some examples illustrating
the main result of Section 3 are included.

2. EQUILIBRIUM MEASURES

Portions of this section are drawn from the comprehensive book [15] by
Saff and Totik.

Throughout this paper, 0 is a bounded domain in the complex plane
that is regular for the Dirichlet problem and g(z; `) is the Green function
for 0 with singularity at `. We shall use the standard terminology that a
property holds quasi-everywhere, and write q.e., if the set on which the
property does not hold has logarithmic capacity zero.

The following well-known facts are needed at several points later;
(b) is a version of the ``lower envelope theorem;'' and (c) is called the
``principle of descent;'' see [6; p. 62] and [15; Theorems 0.1.4, I.6.9, and
I.6.8, respectively].

Proposition 1. Let [+n] be a sequence of positive measures supported
on some compact subset F of 0 and suppose that [+n] converges weak-star
to +.

(a) If H is lower semi-continuous on F, then � H d+�lim inf � H d+n .

(b) � g(z; `) d+(`)=lim inf � g(z; `) d+n(`) q.e. on 0.

(c) If zn � z, then � g(z; `) d+(`)�lim inf � g(zn ; `) d+n(`).

Let S be a compact subset of 0. The holomorphic hull of S relative to 0,
written S� , is the union of S and all those components of the complement
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of S relative to the Riemann sphere that do not contain points of the
boundary of 0. Equivalently,

S� =[z # 0 : | f (z)|�& f &s for all functions f that are analytic on 0].

The set of probability measures on a compact subset E is denoted by
P(E). S(&) denotes the (closed) support of a measure & and �A denotes the
topological boundary of a set A. Finally, Q is an extended real-valued
function on E that is lower semi-continuous on E, Q>&� on E, and
Q<� q.e. on E. We assume throughout that E/0.

Define

VQ= inf
+ # P(E) |

E
|

E
[ g(z; `)+Q(z)+Q(`)] d+(z) d+(`) (3)

and

TQ= inf
: # P(E)

sup
z # E

|
E

[ g(z; `)+Q(`)] d:(`) (4)

If Q#0 in (3) and (4), then we denote the corresponding quantities by VE

and TE , respectively. The following result is standard; see [7] or [15], for
instance.

Proposition 2. Suppose E is a compact set of positive capacity. Then
there is a unique measure +E # P(E) such that

(a) �E �E g(z; `) d+E (z) d+E (`)=VE and TE=VE ;

(b) �E g(z; `) d+E (`)�TE for all z # 0;

(c) the support S(+E) of +E lies in �E� and �E� "S(+E) has capacity zero;

(d) �E g(z; `) d+E (`)=TE q.e. on �E� and for all z # int E� .

Definition. The measure +E from Proposition 2 is called the Green
equilibrium measure for E.

The analogue of Proposition 2 in the presence of an external field Q is
the following.

Proposition 3. Suppose the compact set E has positive logarithmic
capacity. Then there is a unique measure +Q # P(E) such that

(a) VQ=�E �E [ g(z; `)+Q(z)+Q(`)] d+Q(z) d+Q(`);

(b) �E [ g(z; `)+Q(z)+Q(`)] d+Q(`)�VQ q.e. on E; equality holds
q.e. on the support S(+Q) of +Q ;
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(c) the quantities VQ and TQ are related by VQ=TQ+�E Q d+Q ;

(d) if +S is the Green equilibrium measure for the support S=S(+Q)
of +Q , then � [ g(z; `)+Q(`)] d+S(`)�TQ for all z # 0.

Proof. It is easy to see that VQ defined in (3) is finite; indeed, VQ>
&� follows from the lower boundedness of Q on E and VQ<� follows
by taking +=+En

, where n is so large that En :=[z # E : Q(z)�n] has
positive capacity. Proofs of (a)�(c) may be found in [15; Chapter II,
Section 5]. To prove (d) we integrate the equality in (b) with respect to +S

and then apply (c); this gives

|| g(z; `) d+Q(`) d+S(z)+| Q(z) d+S(z)=VQ&| Q d+Q=TQ .

However, by Proposition 2, � g(z; `) d+S(z)=TS q.e. on S where TS is
short for TS(+Q) . Hence,

TS+| Q d+S=TQ . (5)

Set u(z)=� [ g(z; `)+Q(`)] d+S(`). Then by Proposition 2(b) and (5)

u(z)�TS+| Q d+S=TQ , for all z # 0.

This establishes (e).

Definition. The measure +Q given in Proposition 3 is called the Green
equilibrium measure for Q on E.

We now introduce the analogue of the transfinite diameter in the
presence of an external field. This exposition is based on material from [15,
Chapter III, Section 1].

Definition. Let E be a compact set in 0 and let Q satisfy the
hypotheses at the beginning of Section 2. Set

$Q
n = max

z1, ..., zn # E \ `
1�i< j�n

exp[&g(zi , zj)&Q(zi)&Q(zj)]+
2�n(n&1)

. (6)

We remark that in the special case when 0 is the open unit disk and
there is no external field (Q#0), then the extremal points for (6) are noth-
ing but the Tsuji points which play an important role in approximation
theory (see [9], [12]).
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The basic facts about the sequence [$Q
n ] are contained in the next

proposition.

Proposition 4. Let E be a compact subset of 0 and let $Q
n be given by

(6). Then the following assertions hold:

(a) $Q
n �$Q

n+1 , n=1, 2, 3, ...;

(b) limn � � log $Q
n =&VQ ;

(c) if [`1*, ..., `n*] is any optimal set for $Q
n and #n is the measure

obtained by placing the weight 1�n at each of the points [`1*, ..., `n*], then the
sequence of measures [#n] converges weak-star to the Green equilibrium
measure +Q for Q on E;

(d) limn � � � Q d#n=� Q d+Q .

We conclude this section by stating a result concerning the well-
developed concept of ``balayage'' with respect to the Green function (cf. [6,
10]). Because the proof follows from well-known techniques in potential
theory, we omit the details (see, e.g., [15, Chapter II, Section 4]).

Proposition 5. Let E be a compact set with positive logarithmic
capacity and suppose that ; # P(E) is either (a) supported on the interior of
E or (b) has finite energy. Then there is a unique positive measure [;]b on
�E of total mass one and finite energy such that for all z # 0"E and
quasi-every z # �E

|
�E

g(z; `) d[;]b (`)=|
E

g(z; `) d;(`). (7)

Definition. The measure described in Proposition 5 is called the sweep
(or balayage) of ; to �E relative to the Green function.

3. ASYMPTOTIC DISTRIBUTION OF OPTIMIZING POINTS

We return to the minimization problem (2) posed in the introduction.
A Blaschke product of degree n on the unit disc D with zeros at `1 , ..., `n

has modulus |B(z)|=exp(&�n
k=1 g(z; `k)) where g(z; `) is the Green

function for D with pole at `. If W is continuous and |W|=exp(&Q), then

min
B # Bn

[log &BW n&E]=min {max
z # E _& :

n

k=1

g(z; `k)&nQ(z)& : `1 , ..., `n # D=
=&max {min

z # E _ :
n

k=1

g(z; `k)+nQ(z)& : `1 , ..., `n # D= .
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Thus, to solve (2) we must make the minimum over E of the sum of n
Green functions plus nQ(z) as large as possible and then determine the
asympotic behavior of this quantity as n � �. Here are three examples
illustrating some of the possible outcomes of this sort of minimization.

Example 1. Let E be any compact subset of the open unit disc D. It is
known that the zeros of the minimizing Blaschke product lie in the convex
hull of E with respect to the hyperbolic geometry in D; see [17]. If E has
no interior and is convex with respect to the hyperbolic geometry, then the
zeros lie in E. For instance, if E is a subset of (&1, 1), then the zeros of
the minimizing Blaschke product will lie in the smallest closed interval
[a, b] that contains E. In particular, if E is itself a closed interval in
(&1, 1), then the zeros lie in E.

Example 2. On D, take E=[z : |z|�r] where 0<r<1 and Q#0. The
Blaschke product of degree n of minimal sup norm over E is zn; see
Theorem 9 of [3]. Therefore all n zeros of the minimizing Blaschke
product lie at the origin.

Example 3. Again on D, we fix a Blaschke product B0 of degree N�2
and r # (0, 1). We take E=[z # D : |B0(z)|�r] and Q=&log |B0 |. When r
is small, E has as many components as B0 has distinct zeros; as r increases
these components coalesce until there is just one when r is near 1. If
n=kN, then the Blaschke product B of degree n that minimizes &BBn

0&E is
just Bk

0 . Here is an outline of the proof, which is much like Theorem 9 of
[3]. Since Bk

0 has degree kN=n, it is a competitor for the minimal
Blaschke product of degree n and |Bk

0 Bn
0 |#rk+n on �E. Suppose B{Bk

0

has degree n or less and |BBn
0 |�rk+n on �E. We may multiply each of B

and B0 by a unimodular scalar without altering the minimality of B, so
there is no loss in assuming that B0(1)=B(1). We have |B|�rk on �E. Let
=>0; apply Rouche's theorem to (1+=) Bk

0&B and (1+=) Bk
0 first on �E

and then on the unit circle T. We conclude that (1+=) Bk
0=B at n points

of the interior of E and at exactly n points in D, which obviously are then
the same as those already found in the interior of E. Letting = � 0, we see
that B=Bk

0 at n points of E and at no other points of D. On the other
hand, B&Bk

0 vanishes at the point 1 and so when = is sufficiently small,
(1+=) Bk

0&B must have a zero near 1 that evidently must lie outside the
closed unit disc, say at w, |w|>1. By reflection, (1+=) B(w*)=Bk

0(w*)
where w* is the reflection of w over T. This implies that (1+=) B&Bk

0 has
at least n+1 zeros in D, a contradiction. Hence, the zeros of the minimal
norm Blaschke product of degree n=kN, are the N zeros of B0 , each
repeated k times.
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To attack the minimization problem in (2) and its extensions to other
domains, we make the following definition.

Definition.

bn=bn(E; Q)=sup {min
z # E _

1
n

:
n

k=1

g(z; `k)+Q(z)& : `1 , ..., `n # 0= . (8)

The first result gives the asymptotic behavior of bn .

Proposition 6. If E has positive capacity, then limn � �bn=TQ .

Proof. Suppose there is a unit measure ; with compact support in 0
and a number T $>TQ with

| g(z; `) d;(`)+Q(z)�T $, for all z # E. (9)

Integrate both sides of (9) with respect to +S , the Green equilibrium
measure for S=S(+Q). This gives

T $�|| [ g(z; `)+Q(z)] d+S(z) d;(`)�TQ ,

which is a contradiction. Hence,

max
; # P(0)

min
z # E \| g(z; `) d;(`)+Q(z)+�TQ

so that bn�TQ for all n. To see that bn � TQ , we use Proposition 4. Let
[z1 , ..., zn+1] be an optimal set for $Q

n+1 and let #nj be the measure
obtained by placing the mass 1�n at the points zi , i{ j. From (c) of
Proposition 4, the weak-star limit of [#nj] is the equilibrium measure +Q

for Q on E. We then have

:
n+1

i=1; i{ j

[ g(zj ; z i)+Q(zi)+Q(zj)]

=min
z # E

:
n+1

i=1; i{ j

[ g(z; zi)+Q(z)]+ :
n+1

i=1; i{ j

Q(zi)

�nbn+n | Q d#nj .
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Now sum on j from 1 to n+1 and divide both sides by n(n+1) to get

&log $Q
n+1�bn+

1
n+1

:
n+1

j=1
| Q d#nj .

It follows from (b) and (d) of Proposition 4 that VQ�lim inf bn+� Q d+Q .
Equivalently, lim inf bn�TQ .

Definition. A sequence of n-tuples [`1n , ..., `nn], n=1, 2, 3, ..., is
asymptotically optimal if

lim
n � �

min
z # E \

1
n

:
n

k=1

g(z; `kn)+Q(z)+=TQ . (10)

The appearance of the quantity TQ as the limit of the numbers bn raises
the possibility that there is a connection between the Green equilibrium
measure for Q on E and the limit of the measure obtained by placing the
mass 1�n at each of the n points of an asymptotically optimal sequence.
This has already proved to be the case when the asymptotically optimal
sequence is obtained from the sequence described in Proposition 4. In fact,
let us review Example 3 in this light.

Example 4. Let B0 and E be as in Example 3. Let ; be the measure
formed by placing the mass 1�N at each of the N zeros of B0 and let [;]b

be its sweep to �E. Then the sum of Q=&log |B0 | and the Green potential
of [;]b is equal to &2 log r quasi-everywhere on �E and exceeds this
quantity on the interior of E (by the minimum principle for superharmonic
functions). By Theorem II.5.12 of [15], [;]b is the Green equilibrium
measure for Q on E.

In fact, the primary characteristics of Example 3 may be extended quite
generally. Let Q be any domain that is regular for the Dirichlet problem
and let `1 , ..., `N be points (not necessarily distinct) of 0. Fix a positive
number M and define

E={z # 0 : :
N

j=1

g(z; ` j)�M= .

We take Q(z)=�N
j=1 g(z; `j). Let ; be the measure formed by placing the

mass 1�N at each of the N points `1 , ..., `N and let [;]b be its sweep to �E.
Then the sum of Q and the Green potential of [;]b is equal to (1+1�N)M
quasi-everywhere on �E and exceeds this quantity on the interior of E.
Again, Theorem II.5.12 of [15], shows that [;]b is the Green equilibrium
measure for Q on E.
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Example 4 shows that sweeping can establish a connection among the
measures associated to an asymptotically optimal sequence and the Green
equilibrium measure for Q on E, which is supported on �E. This leads us
to the following construction.

Let +Q be the Green equilibrium measure for Q on E and let S=S(+Q)
be its support. For an asymptotically optimal sequence, we define a
measure \n as

\n=
1
n

:
n

j=1

_ jn , (11)

where _jn is the measure given by

_jn={the point mass at `jn if `jn � int S� ,
the sweep to �S� of the unit point mass at `jn if `jn # int S� .

Above and in what follows, ``sweep'' is understood to mean the sweep
relative to the Green function of 0, as described in Proposition 5 at the
end of Section 2.

The main result of this section is the following.

Theorem 7. The sequence [\n] of measures defined in (11) converges
weak-star to [+Q]b , the sweep of +Q to �S� , where S=S(+Q).

Proof. Let +S be the (unweighted) Green equilibrium measure for
S=S(+Q) and set

v(z)=| (g(z; `)+Q(`)) d+S(`).

We know from Proposition 3(d) that v(z)�TQ for all z # 0. Further, v(z)
is harmonic on 0"�S� and is identically equal to (the constant) � Q d+S on
the boundary of 0. Thus, v(z)<TQ for all z in the complement of S� ;
moreover, v is identically constant on the interior of S� . Fix $>0 and let

E$=[z # 0 : v(z)�TQ&$].

Let A=A($) be those indices j, 1� j�n, for which `jn � E$ and let
D=D($) be the remaining indices. We denote the cardinalities of A, D by
A*, D*, respectively. Since [`jn] is asymptotically optimal, there are
numbers =n � 0, such that

TQ&=n�
1
n

:
n

k=1

g(z; `kn)+Q(z), z # E.
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Multiply both sides of this inequality by n and then integrate with respect
to +S . This gives

n(TQ&=n)� :
n

j=1
| [ g(z; `jn)+Q(z)] d+S(z)

= :
n

j=1

v(`jn)= :
j # A

+ :
j # D

�(A*) (TQ&$)+(D*) TQ

=nTQ&$A*.

Hence, =n�$A*�n. We conclude that

lim
n � �

A*

n
=0. (12)

Let \ be a weak-star cluster point of the sequence [\n] defined in (11).
Then by (12) the portion of \n that is contributed by points `jn that lie at
a positive distance from S� is vanishingly small as n � �. Hence, \ is
supported on �S� .

We have

1
n

:
n

k=1

g(z; `kn)=| g(z; `) d\n(`) q.e. on �S�

by the definition of \n and the properties of sweeping. By the lower
envelope theorem

lim inf | g(z; `) d\n(`)=| g(z; `) d\(`) q.e. on 0.

Hence, TQ&Q(z)� � g(z; `) d\(`) q.e. on �S� . Moreover, by Proposi-
tion 3(d),

TQ�| _| g(z; `) d\(`)+Q(z)& d+S(z)

=|| [ g(z; `)+Q(z)] d+S(z) d\(`)�TQ .

It follows that

TQ=| g(z; `) d\(`)+Q(z) a.e. +S . (13)
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However, we know that the support of +S is all of �S� except possibly for
a set of capacity zero. The right-hand side of (13) is lower semi-continuous
and because +S is an equilibrium measure, every set of positive +S -measure
has positive capacity. Hence

TQ� | g(z; `) d\(`)+Q(z) everywhere on �S� . (14)

Now integrate (14) with respect to \; we obtain

TQ�|| g(z; `) d\(`) d\(z)+| Q d\.

Hence, \ has finite Green energy. We also learn that for quasi-every z # �S�

|
�S�

g(z; `) d\(`)=|
S

g(z; `) d+Q(`)=|
�S�

g(z; `) d[+Q]b (`). (15)

Because \ has finite energy, we may apply the Principle of Domination to
conclude that

|
�S�

g(z; `) d\(`)�|
�S�

g(z; `) d[+Q]b (`), z # 0.

However, the measure [+Q]b also has finite energy and so the opposite
inequality holds, as well. Thus, the Green potentials of the measures \
and [+Q]b agree in 0 and therefore the measures coincide; see [15;
Theorem II.5.3].

Corollary 8. When Q#0 the measures \n converge weak-star to the
Green equilibrium measure of E. In particular, if E=�E� , then placing the
mass 1�n at each of the points `jn , j=1, ..., n, produces asymptotically the
Green equilibrium measure of E.

The following two examples illustrate the conclusion of Theorem 7.

Example 5. Let 0=D, the open unit disc, let E be the closed interval
[&a, a], 0<a<1 and take Q#0. It is known that

d+E (x)=
1

2K

dx

- (a2&x2)(1&a2x2)
, &a<x<a
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where

K=|
1

0

dt

- (1&t2)(1&a4t2)
;

see [15; Example II.5.14]. The n zeros of the Blaschke product of degree
n of smallest sup norm on the interval [&a, a] lie in this interval; see
Example 1. By Theorem 7 they are distributed asymptotically to give the
measure +E .

Example 6. Let 0 be any bounded domain that is regular for the
Dirichlet problem, let & be a positive measure of total mass one with com-
pact support E within 0 and finite Green energy, and let U=U &

G be its
Green potential; that is,

U(z)=| g(z; `) d&(`), z # 0.

We take Q=&cU, where c # (0, 1). It is known, see [15; Example
III.5.15], that the Green equilibrium measure for Q on E is

+Q=c&+(1&c) +E , (16)

where +E is the (unweighted) Green equilibrium measure for E. One
illustration of this is obtained by taking 0=D and E as in Example 5.
Another example may be obtained from the construction in Example 4.
Specifically, let `1 , ..., `N be N (distinct) points of 0 and let

E={z # 0 : :
N

k=1

g(z; `k)�M= .

We take & to be, say, Lebesgue area measure on E. As in Example 4, the
(unweighted) Green equilibrium measure +E for E is 1�N times the sum
of the Green sweep to �E of the point mass measure at `k , k=1, ..., N.
Making use of (16), we obtain +Q .
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